ALGEBRA
List 6.
Change of a basis. Linear transformations: matrix, kernel, range

1. Is $(1,-1,2),(2,1,0),(2,0,-1)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(2,3,4)$ in this basis.
2. Is $(1,-1,1),(1,1,0),(0,1,1)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(-2,0,3)$ in this basis.
3. Is $(1,-1,1),(1,1,0),(1,0,1)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(-3,0,2)$ in this basis.
4. Is $(1,-1,1),(1,1,0)$ a basis in \mathbb{R}^{3} ? If yes, give the coordinates of the vector $(-2,0,2)$ in this basis.
5. Is $(-2,0,2)$ a linear combination of $(1,-1,1),(1,1,0)$? If yes, with which coefficients?
6. Is $(-2,0,1)$ a linear combination of $(1,-1,1),(1,1,0)$? If yes, with which coefficients?
7. Let the linear mapping of \mathbb{R}^{2} be given by $T(x, y)=(2 x+y, x-y)$. Find its matrices in the standard basis $B=\left\{e_{1}, e_{2}\right\}$ and in the basis $B^{\prime}=\left\{v_{1}, v_{2}\right\}$ given by $v_{1}=(1,1), v_{2}=(1,-1)$.
8. The linear mapping of \mathbb{R}^{2} transforms the vector $(1,2)$ to $(-1,1)$, and the vector $(2,1)$ to $(3,1)$. Write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
9. For the linear mapping of \mathbb{R}^{2} which corresponds to rotation clockwise around the origin by the angle α composed with the reflection with respect to $O x$ axis, write the matrix of this mapping in the standard basis in \mathbb{R}^{2}.
10. For the linear mapping of \mathbb{R}^{2} which corresponds to reflection with respect to
(a) the $O y$ axis;
(b) the line $y+x=0$;
(c) the line $3 y-4 x=0$,
rite the matrices of these mappings in the standard basis in \mathbb{R}^{2}.
11. For the linear mapping of \mathbb{R}^{3} which corresponds to reflection with respect to
(a) the $O z$ axis;
(b) the $O y z$ plane;
(c) the plane $x+2 y-3 z=0$,
write the matrices of these mappings in the standard basis in \mathbb{R}^{3}.
12. For the linear mappings of \mathbb{R}^{3} which corresponds to rotation counter-clockwise around the $O y$ and $O z$ axes by the angle α, write the matrices of these mappings in the standard basis in \mathbb{R}^{3}. For which values of α these mappings commute?
13. Write the matrices in the standard basis in \mathbb{R}^{3} of the rotation counter-clock wise by angle $\frac{2 \pi}{3}$ around the line $x=y=z$.
